环球电气之家-午夜精彩视频-中国专业电气电子产品行业服务网站!

產品分類

當前位置: 首頁 > 工業(yè)電氣產品 > 端子與連接器 > 線路板連接器 > FFC連接器

類型分類:
科普知識
數(shù)據(jù)分類:
FFC連接器

Energy Measurement ICs Provide Critical Metrics

發(fā)布日期:2022-04-17 點擊率:69

       
Energy harvesting is based on an array of microscale technologies that scavenge power from solar, vibrational, thermal, and biological sources. To design energy-efficient systems, particularly in the case of solar energy for residential or industrial applications, engineers must be able to measure energy use via solutions capable of delivering accurate results across a broad range of measurement parameters. This is especially true in networked systems with multiple nodes, since different nodes may have different harvesting opportunities. In a distributed application, the same end-user performance may be achieved using different workload allocations and different resultant energy consumptions.

once largely the sole concern of utility meter designers, accurate measurement of energy use is now available to a broad range of engineers via highly integrated devices from IC manufacturers, including (alphabetically) Analog Devices, Maxim Integrated Products, NXP Semiconductors, Renesas, STMicroelectronics, and Texas Instruments.

A typical energy measurement signal chain comprises sensors for current and voltage, an analog front end, analog/digital conversion, and signal processor — along with an optional host processor to handle control, communications, and display functions (Figure 1). In applications requiring the utmost accuracy, performance, and functionality, designers often need to implement metering solutions using a combination of devices, each optimized for their role in this signal chain. For many applications, however, integrated devices that combine the entire measurement signal chain on a single device can offer a sufficiently robust solution.

Analog Devices optio<em></em>nal host processor

Figure 1: Engineers can find integrated devices that include on-chip support for each stage of the complete energy-measurement signal chain. (Courtesy of Analog Devices.)

In its simplest form, engineers can use MCUs with on-chip analog-digital converters (ADC) such as Renesas' H8 MCU (Figure 2). Using a development kit such as the Renesas H8/38024 Starter Kit and Renesas-provided energy meter software, engineers can quickly implement a single-phase energy meter.

Renesas simple energy meter

Figure 2: Engineers can build a simple energy meter using an MCU with on-chip ADCs and a suitable software library, but depending on the complexity of the applications, such designs could lead to higher part counts. (Courtesy of Renesas.)

Ensuring reliable measurements can be problematic without special considerations for phase shifts introduced by the sensors collecting the voltage and current signals. For example, a current transformer can introduce phase errors of 0.1° to 0.3°, which must be corrected to ensure accurate power calculations. Devices built specifically for energy metering typically account for phase errors with on-chip features such as those in the STMicroelectronics STPM01. The STPM01 allows engineers to digitally calibrate these small phase errors by setting phase compensation values using the device's 4-bit phase calibration register (CPH).

Designed to measure active, reactive, and apparent power, the STPM01 is a single-chip, mixed-signal device that combines on-chip analog circuitry measurement and digital circuitry for analysis and control. The analog circuitry includes preamplifier and first-order sigma-delta ADC blocks, band gap voltage reference, low drop voltage regulator, while the digital subsystem comprises logic for system control, oscillator, hardwired DSP functionality, and a SPI interface. In standalone operation, the STPM01 provides signals through its power output pins MOP and MON to drive a stepper motor for controlling a roller counter that could be used to display measurement data.

Other integrated energy-measurement devices such as the Texas Instruments MSP430FE42 offer on-chip circuitry for controlling LCD displays. Along with a full 16-bit RISC CPU, the TI MSP430FE42x series includes the ESP430CE1 module — a specialized on-chip metrology engine. Designed to provide all the necessary circuitry needed for energy measurement, the ESP430CE1 module combines a hardware multiplier, three independent 16-bit sigma-delta ADCs, and an embedded signal processor, the ESP430.

Analog Devices includes an enhanced 8052 MCU core in its ADE5566 — an integrated energy-metering IC that combines the 8052 MCU with fixed-function DSP functionality, an analog front end and diverse peripherals including an LCD driver required to build a standalone electronic energy meter. The device's measurement core delivers active, reactive, and apparent energy calculations, as well as voltage and current rms measurements. In addition, the on-chip DSP functionality supports a variety of power line supervisory functions such as sag, peak, and zero-crossing measurement typically required in conventional energy meter applications. As with many of these single-chip energy-metering solutions, kits are available to help engineers evaluate the devices and accelerate new designs.

For its 78M6612 energy measurement IC, Maxim combines a high-performance, 8-bit 8051-compatible MCU with an independent 32-bit computation engine for performing the various calculations required for energy and power measurement (Figure 3). Also on-chip, the Teridian Single-Converter Technology measurement engine combines a 22-bit delta-signal ADC, four analog inputs, precision voltage reference, and digital temperature compensation. Along with 32-Kbyte flash memory, the device includes a comprehensive set of peripherals, including a full complement of on-chip timing functions, watchdog timer, UART interface, GPIOs, and LCD driver.

Maxim 78M6612

Figure 3: The Maxim 78M6612 collapses the entire energy measurement signal chain onto a single silicon die. In this device, the computational engine (CE) processes samples from the ADC and communicates with the microprocessor unit (MPU) via status signals and use of shared registers. (Courtesy of Maxim Integrated Products.)

Maxim's 71M6531 is a system-on-chip (SoC) device intended for residential metering applications. The highly integrated device combines the features found on the 78M6612 energy measurement IC with additional capabilities such as robust tamper detection typically required in single- and dual-phase residential metering applications.

NXP offers its own highly integrated SoC for energy metering. The NXP EM773 is an ARM Cortex-M0-based, 32-bit energy-metering IC designed for smart-metering applications. The device includes 32 Kbyte flash and 8 Kbyte of SRAM for data, 25 GPIO pins, high-current output and sink pins, three general-purpose timers, programmable watchdog timer, serial interfaces, and multiple clock generation options. Although the EM773 does not include on-chip LCD drivers as with other devices in this class, NXP designed the device with a bidirectional I2C-bus controller that can be used for two-way chip-to-chip communications or one-way communications with receiver-only devices such as LCD drivers.

For energy measurement, the EM773 boasts a complete metrology engine that delivers a full range of IEEE Std. 1459-2010 measurements, including rms voltage, rms current, active power, apparent power, non-active power, power factor, fundamental reactive power, fundamental apparent power, fundamental power factor, non-fundamental apparent power, and current total harmonic distortion. The device achieves one percent accuracy while automatically performing calculations without CPU intervention.

As companies respond to increased demand for energy efficiency and try to determine whether the best approach for a given application is through traditional or alternative-energy means, the need for precise, readily available energy measurement devices grows in importance. Integrated devices such as those mentioned above offer a cost-effective solution. More information can be found by using the provided links to product pages on the Digi-Key website.

 

下一篇: PLC、DCS、FCS三大控

上一篇: I/O-Port Expanders O

推薦產品

更多
主站蜘蛛池模板: 美国HASKEL增压泵-伊莱科elettrotec流量开关-上海方未机械设备有限公司 | 依维柯自动挡房车,自行式国产改装房车,小型房车价格,中国十大房车品牌_南京拓锐斯特房车 - 南京拓锐斯特房车 | 一氧化氮泄露报警器,二甲苯浓度超标报警器-郑州汇瑞埔电子技术有限公司 | 口信网(kousing.com) - 行业资讯_行业展会_行业培训_行业资料 | 智能型高压核相仪-自动开口闪点测试仪-QJ41A电雷管测试仪|上海妙定 | 武汉天安盾电子设备有限公司 - 安盾安检,武汉安检门,武汉安检机,武汉金属探测器,武汉测温安检门,武汉X光行李安检机,武汉防爆罐,武汉车底安全检查,武汉液体探测仪,武汉安检防爆设备 | 恒温槽_恒温水槽_恒温水浴槽-上海方瑞仪器有限公司 | 氮化镓芯片-碳化硅二极管 - 华燊泰半导体 | 一体化污水处理设备_生活污水处理设备_全自动加药装置厂家-明基环保 | 空冷器|空气冷却器|空水冷却器-无锡赛迪森机械有限公司[官网] | 济南冷库安装-山东冷库设计|建造|冷库维修-山东齐雪制冷设备有限公司 | 东莞螺杆空压机_永磁变频空压机_节能空压机_空压机工厂批发_深圳螺杆空压机_广州螺杆空压机_东莞空压机_空压机批发_东莞空压机工厂批发_东莞市文颖设备科技有限公司 | 高压微雾加湿器_工业加湿器_温室喷雾-昌润空气净化设备 | 深圳律师咨询_深圳律师事务所_华荣【免费在线法律咨询】网 | 特种阀门-调节阀门-高温熔盐阀-镍合金截止阀-钛阀门-高温阀门-高性能蝶阀-蒙乃尔合金阀门-福建捷斯特阀门制造有限公司 | 对辊破碎机-液压双辊式,强力双齿辊,四辊破碎机价格_巩义市金联机械设备生产厂家 | 气力输送_输送机械_自动化配料系统_负压吸送_制造主力军江苏高达智能装备有限公司! | 气动隔膜阀_气动隔膜阀厂家_卫生级隔膜阀价格_浙江浙控阀门有限公司 | 微波消解仪器_智能微波消解仪报价_高压微波消解仪厂家_那艾 | 深圳工程师职称评定条件及流程_深圳职称评审_职称评审-职称网 | 根系分析仪,大米外观品质检测仪,考种仪,藻类鉴定计数仪,叶面积仪,菌落计数仪,抑菌圈测量仪,抗生素效价测定仪,植物表型仪,冠层分析仪-杭州万深检测仪器网 | 重庆网站建设,重庆网站设计,重庆网站制作,重庆seo,重庆做网站,重庆seo,重庆公众号运营,重庆小程序开发 | 防腐木批发价格_深圳_惠州_东莞防腐木厂家_森源(深圳)防腐木有限公司 | 顺景erp系统_erp软件_erp软件系统_企业erp管理系统-广东顺景软件科技有限公司 | 广州展览制作工厂—[优简]直营展台制作工厂_展会搭建资质齐全 | 气动|电动调节阀|球阀|蝶阀-自力式调节阀-上海渠工阀门管道工程有限公司 | 半自动预灌装机,卡式瓶灌装机,注射器灌装机,给药器灌装机,大输液灌装机,西林瓶灌装机-长沙一星制药机械有限公司 | 充气膜专家-气膜馆-PTFE膜结构-ETFE膜结构-商业街膜结构-奥克金鼎 | 联系我们老街华纳娱乐公司官网19989979996(客服) | 立式壁挂广告机厂家-红外电容触摸一体机价格-华邦瀛 | 团建-拓展-拓展培训-拓展训练-户外拓展训练基地[无锡劲途] | 旋振筛|圆形摇摆筛|直线振动筛|滚筒筛|压榨机|河南天众机械设备有限公司 | 网站建设-高端品牌网站设计制作一站式定制_杭州APP/微信小程序开发运营-鼎易科技 | 北京遮阳网-防尘盖土网-盖土草坪-迷彩网-防尘网生产厂家-京兴科技 | 低气压试验箱_高低温低气压试验箱_低气压实验箱 |林频试验设备品牌 | 祝融环境-地源热泵多恒系统高新技术企业,舒适生活环境缔造者! | 华溶溶出仪-Memmert稳定箱-上海协烁仪器科技有限公司 | 消防设施操作员考试报名时间,报名入口,报考条件 | 篷房|仓储篷房|铝合金篷房|体育篷房|篷房厂家-华烨建筑科技官网 知名电动蝶阀,电动球阀,气动蝶阀,气动球阀生产厂家|价格透明-【固菲阀门官网】 | 防伪溯源|防窜货|微信二维码营销|兆信_行业内领先的防伪防窜货数字化营销解决方案供应商 | 论文查重_免费论文查重_知网学术不端论文查重检测系统入口_论文查重软件 |