發布日期:2022-10-09 點擊率:59
氧傳感器的工作原理圖:為什么氧傳感器總是壞? 第1張" title="氧傳感器的工作原理圖:為什么氧傳感器總是壞? 第1張-傳感器知識網"/>
上一次我們分析了氧傳感器為什么會壞掉,這次我們來講講氧傳感器到底是如何工作的?
起源1889年德國物理化學家Nernest能斯特發現“熱力學第三定律”即能斯特方程。發現穩定的氧化鋯在高溫下呈現離子導電現象,到1976年BOSCH公司將這項技術開發應用到沃爾沃轎車,隨后得到廣泛應用。
基礎原理氧化鋯(ZrO2)是典型離子體,在600℃以上成為氧的快離子導體,人們稱他為固體電解質,這種陶瓷材料對氧具有高度敏感性,被廣泛應用于氧探頭。氧化鋯(ZrO2)是離子導電體,它是通過晶格內的氧離子空位來實現導電的。在氧化鋯電解質(ZrO2管)的兩側分別燒結多孔鉑(Pt)電極,在一定溫度下,當電解質兩側氧濃度不同時,高濃度側的氧分子(O2)被吸附到鉑(Pt)電極上與電子(4e)結合形成氧離子(O2-),使該電極帶正電(+),氧離子(O2-)通過電解質的氧離子空位遷移到氧濃度低的Pt電極上放出電子,轉化成楊分子(O2),使該電極帶負電。
這樣兩個電極間會產生一個電動勢,氧化鋯、Pt電極、兩側不同的氧濃度氣體組成氧探頭即氧化鋯濃差電池(也叫能斯特電池),其方程就是著名的能斯特方程:
公式中:
ES – 能斯特參考電壓,
R - 氣體常數8.314J/(mol·K),
T - 絕對溫度,
F –法拉第常數C.mol-1,
Po2– 測量氣他中氧分壓,
Poref– 參考氣他氧分壓(通常為20.95%的標準空氣)。
通過公式可知,當空氣為參考氣體,在知道能斯特電壓及被測氣體溫度后,便可知道被測氣體的濃度,氧傳感器正是利用這一原理制成的。
窄域氧傳感器最初BOSCH利用上述原理制作了四線窄域氧傳感器,其結構體如下,氧化鋯元件內外壁都設置具有催化作用的多孔鉑(Pt)電極,其內側與氧濃度高的大氣連通。由于氧傳感器的氧化鋯材料在350℃或更高溫度是才可以引導氧離子擴散,所以專門設計了加熱單元來加熱氧化鋯電解質以使傳感器盡快進入工作狀態。
當氧傳感器內外表面濃度差增大時,所產生的的Nernst電壓也隨之增加,當尾氣為濃混合氣(λ
氧傳感器的工作原理是:利用陶瓷敏感元件測量汽車排氣管道中的氧電勢,由化學平衡原理計算出對應的氧濃度,達到監測和控制燃燒空燃比的目的,以保證產品質量及尾氣排放達標的測量元件。氧傳感器的作用是:測定發動機燃燒后排氣中氧是否過剩的信息,并把氧氣含量轉換成電壓信號傳遞到發動機計算機,使發動機能夠實現以過量空氣為目標的閉環控制,確保三元催化轉化器對排氣中的碳氫化合物、一氧化碳、氮氧化合物污染物有較大的轉化效率,較大程度地進行排放污染物的轉化和凈化。
現在的汽車上主要運用的氧傳感器有二氧化鋯氧傳感器、二氧化鈦氧傳感器及寬域型氧傳感器三種,下面將重點介紹二氧化鋯氧傳感器結構、原理以及檢測方法。
氧傳感器的作用
氧傳感器用于檢測廢氣中的氧含量并獲得混合氣的空燃比濃稀信號,該信號輸入ECM后,ECM 根據該信號調整發動機的噴油量,實現閉環控制,使催化轉換器更好地發揮凈化作用。
二氧化鋯氧傳感器的組成結構
二氧化鋯氧傳感器由鋯管(傳感元件)、電極和防護套管等組成,如下圖所示。鋯管是由含有少量釔的二氧化鋯(ZrO2)制成的固態電解質元件,在鋯管內、外兩側涂覆一層多孔性鉑膜電極。鋯管內側通大氣,外側與排氣接觸。
(汽車維修技術網
二氧化鋯氧傳感器的組成構造(單線)
二氧化鋯氧傳感器的工作原理
工作時,在高溫廢氣沖刷下,氧氣發生電離,由于鋯管內側氧離子濃度高,外側氧離子濃度低,在氧濃差作用下,氧離子從大氣側向排氣側擴散,從而形成了氧濃度差電池,如下圖所示。
當混合氣稀時,排氣中含氧量高,鋯管內外兩側濃度差小,產生的電動勢小,大約為100mV。
當混合氣濃時,排氣中含氧量低,濃度差大,產生的電動勢高,大約為900mV。電動勢的高低以理論空燃比為界限發生突變,如下圖。
氧傳感器輸出特性曲線
氧傳感器的輸出特性與排氣溫度有關,當排氣溫度低于300℃時,氧傳感器的輸出特性不穩定。
發動機剛剛啟動后,由于排氣溫度偏低,氧傳感器不工作,發動機在開環狀態下工作。只有排氣溫度升高后,氧傳感器才工作。所以,氧傳感器的安裝位置應在排氣溫度較高處。
有的車型上安裝有排氣溫度傳感器,當排氣溫度傳感器的信號達到一定值后ECU 才根據氧傳感器的信號進行空燃比反饋修正一調整噴油量、控制混合氣的濃度,即發動機開始進行閉環控制。
氧 傳感器 是安裝在發動機上為了減少排氣污染的裝置。也可以說是汽車尾氣的過濾器,在當今霧霾嚴重的今天氧傳感器是必不可少的原件。氧傳感器具有了結構簡單、響應迅速、維護容易、使用方便和節約能源等優點,這么神奇的裝置大家沒興趣了解一下嗎?
氧傳感器是一種用來檢測某設備排氣中氧的濃度,并向ECU發出反饋信號,再由ECU控制噴油器噴油量的增減,從而將混合氣的空燃比控制在理論值附近的傳感器。
其工作原理與 干電池 相似,傳感器中的氧化鋯元素起類似電解液的作用。其基本工作原理是:在一定條件下(高溫和鉑催化),利用氧化鋯內外兩側的氧濃度差,產生電位差,且濃度差越大,電位差越大。大氣中氧的含量為21%,濃混合氣燃燒后的廢氣實際上不含氧,稀混合氣燃燒后生成的廢氣或因缺火產生的廢氣中含有較多的氧,但仍比大氣中的氧少得多。
在高溫及鉑的催化下,帶負電的氧離子吸附在氧化鋯套管的內外表面上。由于大氣中的氧氣比廢氣中的氧氣多,套管上與大氣相通一側比廢氣一側吸附更多的負離子,兩側離子的濃度差產生電動勢。當套管廢氣一側的氧濃度低時,在電極之間產生一個高電壓(0。6~1V),這個電壓信號被送到ECU放大處理,ECU把高電壓信號看作濃混合氣,而把低電壓信號看作稀混合氣。
根據氧傳感器的電壓信號,電腦按照盡可能接近14.7:1的理論最佳空燃比來稀釋或加濃混合氣。因此氧傳感器是電子控制燃油計量的關鍵傳感器。氧傳感器只有在高溫時(端部達到300°C以上)其特性才能充分體現,才能輸出電壓。它在約800°C時,對混合氣的變化反應最快,而在低溫時這種特性會發生很大變化。
氧傳感器也有其缺點,但是它的利遠大于弊端,它不僅為現在惡化的環境起到了緩解的作用,還潛移默化的保護了我們的健康,使我們呼入的氧氣更加干凈。
下一篇: PLC、DCS、FCS三大控
上一篇: 電氣控制線路圖控制原