發布日期:2022-10-18 點擊率:51
本文來自Qorvo公眾號
引言:2017 年,Qorvo 出版了第 1 版《5G 射頻技術 For Dummies》。該書以通俗易懂的語言,幫助業界許多人士掌握了一些圍繞 5G 技術的復雜概念。在之前,我們也做了《科普丨重新認識 5G》、《科普丨了解 5G 核心實現技術》、《科普丨發現 5G 的不同之處》、《科普丨介紹 5G 3GPP 全球頻譜》和《科普丨深入了解 5G NR》五篇報道。
今天,我們將帶大家認識一下 5G 的射頻技術。
5G 愿景的真正實現,還需要更多創新。網絡基站和用戶設備(例如:手機)變得越來越纖薄和小巧,能耗也變得越來越低。為了適合小尺寸設備,許多射頻應用所使用的印刷電路板(PCB)也在不斷減小尺寸。因此,射頻應用供應商必須開發新的封裝技術,盡量減小射頻組件的占位面積。再進一步,部分供應商開始開發系統級封裝辦法(SiP),以減少射頻組件的數量——盡管這種辦法將會增加封裝成本。
系統級封裝辦法正在被用于射頻前端,而射頻前端包含基站與天線中間的所有組件。
一個典型的射頻前端由開關、濾波器、放大器及調諧組件組成。這些技術設備的尺寸不斷減小,并且相互集成度不斷加大。結果,在手機、小蜂窩、天線陣列系統、Wi-Fi 等 5G 應用中,射頻前端正在變成一個復雜的、高度集成的系統封包。
不管怎樣,5G愿景的實現都需要射頻技術和封裝技術的顛覆性創新。
氮化鎵技術
氮化鎵(GaN)是一種二進制 III/V 族帶隙半導體,非常適合用于高功率、耐高溫晶體管。氮化鎵功率放大器技術的 5G 通信潛力才剛剛顯現。氮化鎵具有高射頻功率、低直流功耗、小尺寸及高可靠性等優勢,讓設備制造商能夠減小基站體積。反過來,這又有助于減少 5G 基站信號塔上安裝的天線陣列系統的重量,因此可以降低安裝成本。另外,氮化鎵還能在各種毫米波頻率上,輕松支持高吞吐量和寬帶寬。
氮化鎵技術最適合實現高有效等向輻射基站功率(EIRP),如圖 4-5 所示。美國聯邦通信委員會定義了非常高的 EIRP 限值,規定對于 28GHz 和 39GHz 頻帶,每 100MHz 帶寬需要達到 75 dBm 功率。因此帶來了哪些挑戰?相關設備的搭建既要滿足這些目標,又要將成本、尺寸、重量和功率等保持在移動網絡運營商的預算范圍內。氮化鎵技術是關鍵;相比于其他技術,氮化鎵技術在達到以上高 EIRP 值時,使用的元件更少,并且輸出功率更高。
圖 4-5:半導體技術與 EIRP 需求的適應性比較。
對于高功率基站應用,相比于鍺硅(SiGe)或硅(Si)等其他功率放大器技術,在相同 EIRP 目標值下,氮化鎵技術的總功率耗散更低,如圖 4-6 所示。氮化鎵減少了整體系統的重量和復雜性,同時還仍保持較低功耗,因此更適合塔上安裝系統的設計。
氮化鎵技術的部分重要屬性:
由于新增頻帶和載波聚合,再加上蜂窩通信必須與許多其他無線標準共存的事實,干涉問題比以往更加嚴重。要減少頻帶與標準之間的干涉,濾波器技術是關鍵。
表面聲波濾波器和體聲波濾波器具有占位面積小、性能優異、經濟適用等優勢,在移動設備濾波器市場上居于主導地位。
射頻前端由多個半導體技術設備組成。眾多的 5G 應用需要五花八門的處理技術、設計技巧、集成辦法和封裝辦法,以滿足各個獨特用例的需求。
對于 5G 的 7GHz 以下頻段,相應的射頻前端解決方案需要創新封裝辦法,例如,提高組件排列的緊湊度;縮短組件之間的導線長度,以盡量減少損耗;采用雙面安裝;劃區屏蔽;以及使用更高質量的表面安裝技術組件等。
所有 5G 用例都需要射頻前端技術。根據射頻功能、頻帶、功率等級等性能要求,射頻半導體技術的選擇不盡相同。如圖 4-9 所示,每個射頻功能和應用分別對應多個半導體技術。這些應用需要五花八門的處理技術、設計技巧、集成辦法和封裝辦法,以滿足各個獨特用例的特定需求。
下一篇: PLC、DCS、FCS三大控
上一篇: 5G 未來發展道路上的