环球电气之家-午夜精彩视频-中国专业电气电子产品行业服务网站!

產(chǎn)品分類

當(dāng)前位置: 首頁 > 工業(yè)電子產(chǎn)品 > 半導(dǎo)體產(chǎn)品 > 微處理器MPU > Cortex

類型分類:
科普知識
數(shù)據(jù)分類:
Cortex

Which ARM Cortex CPU is Right for Your Next MCU-Based Application?

發(fā)布日期:2022-05-18 點(diǎn)擊率:100

       
ARM-based CPUs are ubiquitous in the MCU world and often there are several available from the same MCU supplier. Each ARM CPU has been optimized for a class of specific processing requirements, from low-end power-constrained applications to high-power performance-optimized, dual-core applications. The most popular ARM CPU today in MCU devices seems to be the Cortex CPU. How do you decide which ARM Cortex CPU is the right one for your application? Let’s explore the primary differences between some of the more popular Cortex-based MCUs by looking at example implementations that will help you decide which one is just right for your next design.

Many options

It’s not unusual to find many different ARM Cortex CPUs within a single MCU family. The Cortex CPU and its optional extensions address a variety of application needs, but all have backward-compatible instruction sets, as illustrated in Figure 1. Starting with the Cortex-M0/M0+/M1 family, the instruction set is targeted for general-purpose data processing and IO tasks. The Cortex-M3 CPU adds advanced-data processing and bit-field manipulation instructions that speed up more complex control and general-purpose computational tasks. The Cortex-M4 CPU adds Digital-Signal processing (DSP) instructions and offers Single-Instruction Multiple-Data (SIMD) operations where the same data-processing instruction can operate on multiple-data sources at the same time. These specialized capabilities can dramatically accelerate complex data-processing tasks, like those found in audio and video applications. The Cortex-M4 CPU can also add a Floating Point Unit (FPU) when performance and precision are both important elements for the target algorithm. Analog sensing and motor control, for example, often use floating point for its precision, but high performance is required for fast-control loop closure.

Image of ARM Cortex MCUs instruction set compatibility


Figure 1: ARM Cortex MCUs instruction set compatibility. (Courtesy of ARM and STMicroelectronics) 


One key advantage of this regular- and backward-compatible instruction set is that MCU manufacturers can create devices optimized for specific applications, while “covering all bets” by having upward compatibility if the algorithm grows in complexity during the lifetime of the target system. For example, how many times have you needed to add more complex functions in order to satisfy new requirements during development? The upward compatibility of the Cortex Instruction Set Architecture (ISA) makes this easy. In some cases it is possible to simplify the target architecture too, since downward compatibility allows you to reduce cost if lower performance is acceptable.

STMicroelectronics has used several ARM Cortex CPUs within its STM32 MCU family. Figure 2 illustrates the various Cortex CPUs and the key hardware features associated with each MCU series. Notice that the Cortex-M0 CPU is used on the entry-level STM32F030/50/051 devices while the Cortex-M4 with DSP and FPU is used on the high-performance STM32F4xx (such as the STM32F401RCT6) and STM32F3xx devices. The mid-range devices use the Cortex-M3 CPU where the more complex DSP and FPU instructions are not required to have the highest possible performance. (These instructions can be implemented with multiple instructions if needed and most compilers provide a fairly transparent method for switching between hardware implementations and multi-cycle “soft” implementations.)

Image of STMicroelectro<em></em>nics STM32F MCU family Cortex CPUs


Figure 2: STM32F MCU family Cortex CPUs and key hardware features. (Courtesy of STMicroelectronics) 


Other vendors also support multiple flavors of ARM Cortex MCUs, often over wide performance and cost ranges. Silicon Labs, for example, has the EFM32 family of MCUs (e.g., the EFM32ZG222F32-QFP48) that use the ARM Cortex-M CPU. The low-end low-power GZ series uses the Cortex-M0+ CPU while the mid-range TG, G, LG, and GG series use the Cortex-M3 CPU. The high-end WG series uses the Cortex-M4 CPU with DSP and FPU enhancements. There are 10 different package options making it possible, with a little up-front planning, to migrate from one CPU type to another, making it easier to adapt to changing requirements or to offer different products using the same base design.

The Cortex-A architecture

The Cortex-M architecture is a very popular one with MCU manufacturers, but the Cortex-A architecture is also showing up in vendors’ devices as well, often in MPUs, where large external memories are used for instructions and data. The Cortex-A CPU is optimized for very-high-performance applications, often with requirements for features like video playback and advanced security. The Atmel Cortex-A5-based SAMA5D4 MPUs, for example (Figure 3), use the Cortex-A5 CPU with a 2 x 32 kb Level 1 cache and a 128 kb Level 2 cache to speed processing performance. An on-chip DDR2/LPDDR/LPDDR2 controller accesses instructions and data from an external memory so very large programs and data sets can be used. Video processing algorithms, for instance, can require very large data sets and also very large programs. Hardware subsystems provide significant capabilities for security, connectivity, control, and user interfaces to simplify the creation of complex human machine interfaces and the associated control systems.

Image of Atmel SAMA5D4 MPU block diagram


Figure 3: Atmel SAMA5D4 MPU block diagram. (Courtesy of Atmel) 


The SAMA5D4 also supports two important Cortex extension functions – Trust Zone and NEON. Trust Zone supports secure code execution. Typically a processor needs to execute some security-related functions (such as secure PIN entry, or password protection) as well as some normal program functions (such as a graphic display or menu-selection routines). Trust Zone hardware extensions allow the programmer to protect security-related functions from normal accesses and potential security attacks. Even debug capabilities can be limited to just the normal program to further protect the secure routines from snooping and similar attacks.

The NEON extensions provide significant processing performance improvements for SIMD-based algorithms. Common targets for the NEON extension are multimedia, signal processing 2D/3D graphics, video encode/decode, and sound synthesis. NEON has its own independent pipeline and register file and can support signed/unsigned 8-, 16-, 32-, 64-bit, and single-precision floating-point operations on 32 registers that are treated as 64- or 128-bits wide depending on the instruction. NEON can typically provide a significant performance boost over non-SIMD implementations; a 60-150 percent performance boost on complex video codecs is a typical example.

Multi-core CPU solutions

ARM Cortex CPUs are also showing up in multi-core MCU implementations. These devices sometimes have two different performance CPUs, one very-high performance for the “heavy lifting” of the target application functions, and a slower-performance CPU for managing communications ports, user interfaces, and similar low-level control functions. Other multi-core devices have the same type of CPU, just replicated, to make it easy to partition and allocate less-specialized processing functions to achieve the right balance of processing and power efficiency. For example, one CPU could be put in a low-power wait state if it is not required to meet the performance requirement (perhaps during a “slow” data period) and then turned on when additional processing is required.

Texas Instruments, in its Concerto MCU family illustrated in Figure 4 (as an example see the F28M35H52C1RFPT) has added an ARM Cortex-M3 processor to its popular C28x CPU to provide an easy solution for both control and connectivity in a single device. The C28x CPU has been optimized for real-time control and it can leverage its 15+ years of DSP-application experience. The ARM Cortex-M3 CPU is optimized for communications applications and it can leverage the extensive ARM ecosystem for communications drivers (Ethernet, USB, CAN, SPI, etc.) as well as robust scheduling and O/S support.

Image of Texas Instruments dual CPU core Concerto? MCU family


Figure 4: Dual CPU Core Concerto? MCU family from Texas Instruments. (Courtesy of Texas Instruments) 


Matching your application to the right ARM Cortex CPU

You can find ARM Cortex CPUs in a wide variety of MCU families from just about every MCU manufacturer. In order to match the right Cortex CPU with your application you should start by determining which instruction set is the best fit for your application. In particular, look to see if advanced-data-processing capabilities like floating point or DSP are required. Do you need even more advanced features like NEON or Trust Zone? Perhaps your application is more control oriented and low power is a key requirement? If so, the simpler M0 architecture might be the right fit. Mid-range designs can take advantage of the Cortex-M3 CPU and select the device based on connectivity requirements and other key peripherals – you typically have the most choice in mid-range devices from your MCU manufacturer.

If your requirements change during the design phase you may want to be able to migrate to a more feature-rich device or to a more feature-lean device. In this case it may be important to select an MCU family that supports easy migration between devices. You can also use the large ARM Cortex ecosystem to leverage proven drivers, an RTOS, function-specific libraries and development-tool chains. No matter what ARM Cortex CPU you select you can be sure there will be a robust ecosystem available to simplify your design.

For more information on the parts discussed in this article, use the links provided to access product pages on the Digi-Key website.

下一篇: 斷路器、隔離開關(guān)、接

上一篇: 索爾維全系列Solef?PV

推薦產(chǎn)品

更多
主站蜘蛛池模板: 等离子空气净化器_医用空气消毒机_空气净化消毒机_中央家用新风系统厂家_利安达官网 | 管形母线,全绝缘铜管母线厂家-山东佰特电气科技有限公司 | 广东机电安装工程_中央空调工程_东莞装饰装修-广东粤标建设有限公司 | 头条搜索极速版下载安装免费新版,头条搜索极速版邀请码怎么填写? - 欧远全 | 泰来华顿液氮罐,美国MVE液氮罐,自增压液氮罐,定制液氮生物容器,进口杜瓦瓶-上海京灿精密机械有限公司 | 智能门锁电机_智能门锁离合器_智能门锁电机厂家-温州劲力智能科技有限公司 | 继电器模组-IO端子台-plc连接线-省配线模组厂家-世麦德 | 对照品_中药对照品_标准品_对照药材_「格利普」高纯中药标准品厂家-成都格利普生物科技有限公司 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库 | 英国雷迪地下管线探测仪-雷迪RD8100管线仪-多功能数字听漏仪-北京迪瑞进创科技有限公司 | 充气膜专家-气膜馆-PTFE膜结构-ETFE膜结构-商业街膜结构-奥克金鼎 | 智成电子深圳tdk一级代理-提供TDK电容电感贴片蜂鸣器磁芯lambda电源代理经销,TDK代理商有哪些TDK一级代理商排名查询。-深圳tdk一级代理 | 青岛美佳乐清洁工程有限公司|青岛油烟管道清洗|酒店|企事业单位|学校工厂厨房|青岛油烟管道清洗 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 恒湿机_除湿加湿一体机_恒湿净化消毒一体机厂家-杭州英腾电器有限公司 | 口臭的治疗方法,口臭怎么办,怎么除口臭,口臭的原因-口臭治疗网 | GAST/BRIWATEC/CINCINNATI/KARL-KLEIN/ZIEHL-ABEGG风机|亚喜科技 | 北京自然绿环境科技发展有限公司专业生产【洗车机_加油站洗车机-全自动洗车机】 | 光环国际-新三板公司_股票代码:838504 | 科箭WMS仓库管理软件-TMS物流管理系统-科箭SaaS云服务 | 数控走心机-走心机价格-双主轴走心机-宝宇百科 | 扬子叉车厂家_升降平台_电动搬运车|堆高车-扬子仓储叉车官网 | 水冷散热器_水冷电子散热器_大功率散热器_水冷板散热器厂家-河源市恒光辉散热器有限公司 | IWIS链条代理-ALPS耦合透镜-硅烷预处理剂-上海顶楚电子有限公司 lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 重庆磨床过滤机,重庆纸带过滤机,机床伸缩钣金,重庆机床钣金护罩-重庆达鸿兴精密机械制造有限公司 | 防爆电机_防爆电机型号_河南省南洋防爆电机有限公司 | RO反渗透设备_厂家_价格_河南郑州江宇环保科技有限公司 | 工控机,嵌入式主板,工业主板,arm主板,图像采集卡,poe网卡,朗锐智科 | 郑州大巴车出租|中巴车租赁|旅游大巴租车|包车|郑州旅游大巴车租赁有限公司 | 自动钻孔机-全自动数控钻孔机生产厂家-多米(广东)智能装备有限公司 | 臭氧灭菌箱-油桶加热箱-原料桶加热融化烘箱-南京腾阳干燥设备厂 臭氧发生器_臭氧消毒机 - 【同林品牌 实力厂家】 | 半容积式换热器_北京浮动盘管换热器厂家|北京亿丰上达 | 屏蔽泵厂家,化工屏蔽泵_维修-淄博泵业| 莱州网络公司|莱州网站建设|莱州网站优化|莱州阿里巴巴-莱州唯佳网络科技有限公司 | 南京欧陆电气股份有限公司-风力发电机官网 | 淘气堡_室内儿童乐园_户外无动力儿童游乐设备-高乐迪(北京) | 贴板式电磁阀-不锈钢-气动上展式放料阀-上海弗雷西阀门有限公司 工业机械三维动画制作 环保设备原理三维演示动画 自动化装配产线三维动画制作公司-南京燃动数字 | 智能化的检漏仪_气密性测试仪_流量测试仪_流阻阻力测试仪_呼吸管快速检漏仪_连接器防水测试仪_车载镜头测试仪_奥图自动化科技 | sfp光模块,高速万兆光模块工厂-性价比更高的光纤模块制造商-武汉恒泰通 | 领袖户外_深度旅游、摄影旅游、小团慢旅行、驴友网 | 南京雕塑制作厂家-不锈钢雕塑制作-玻璃钢雕塑制作-先登雕塑厂 | 自动记录数据电子台秤,记忆储存重量电子桌称,设定时间记录电子秤-昆山巨天 | 电动打包机_气动打包机_钢带捆扎机_废纸打包机_手动捆扎机 |